Meshless Local Petrov–Galerkin Formulation of Inverse Stefan Problem via Moving Least Squares Approximation
نویسندگان
چکیده
منابع مشابه
Moving Least Squares Approximation
An alternative to radial basis function interpolation and approximation is the so-called moving least squares method. As we will see below, in this method the approximation Pf to f is obtained by solving many (small) linear systems, instead of via solution of a single – but large – linear system as we did in the previous chapters. To make a connection with the previous chapters we start with th...
متن کاملA meshless discrete Galerkin method for solving the universe evolution differential equations based on the moving least squares approximation
In terms of observational data, there are some problems in the standard Big Bang cosmological model. Inflation era, early accelerated phase of the evolution of the universe, can successfully solve these problems. The inflation epoch can be explained by scalar inflaton field. The evolution of this field is presented by a non-linear differential equation. This equation is considered in FLRW model...
متن کاملThe approximation power of moving least-squares
A general method for near-best approximations to functionals on Rd, using scattered-data information is discussed. The method is actually the moving least-squares method, presented by the Backus-Gilbert approach. It is shown that the method works very well for interpolation, smoothing and derivatives’ approximations. For the interpolation problem this approach gives Mclain’s method. The method ...
متن کاملIterated Approximate Moving Least Squares Approximation
The radial basis function interpolant is known to be the best approximation to a set of scattered data when the error is measured in the native space norm. The approximate moving least squares method, on the other hand, was recently proposed as an efficient approximation method that avoids the solution of the system of linear equations associated with the radial basis function interpolant. In t...
متن کاملMoving Least Squares Multiresolution Surface Approximation
We describe a new method for surface reconstruction based on unorganized point clouds without normals. We also present a new algorithm for refining the inital triangulation. The output of the method is a refined triangular mesh with points on the moving least squares surface of the original point cloud.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical and Computational Applications
سال: 2019
ISSN: 2297-8747
DOI: 10.3390/mca24040101